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Abstract
A one-parameter family of coordinate transformations is shown to lead to
a simple finite difference method which gives highly accurate energies and
expectation values for the Schrödinger equation in which the potential consists
of a smooth term plus a perturbing term which is singular at the origin. The
method is effective down to very small values of the perturbation parameter and
supplements the previously reported perturbation approach which is valuable
for large λ values.

PACS numbers: 0365, 3115M

In this short letter we present a simple and accurate method for the calculation of the energy
levels of a potential which has a strong singularity at the origin r = 0. The Schrödinger
equation for the spiked oscillator

−D2ψ + (r2 + λr−M)ψ = Eψ (1)

has frequently been treated as a test case in the literature [1–18], and so we give some specimen
results for this problem as well as for some others. For a smooth perturbation such as a λr4 the
computational problems arise for largeλvalues; in contrast, for the singular perturbing potential
in (1) it is the small λ region which causes the most difficulty, since the greatest re-shaping of
the wavefunction appears in a very small band of r values near to the origin. For large λ values
(typically greater than 1) perturbation theory actually becomes easier, since it can be carried
out about the minimum of the potential, which is at some distance from the origin. This makes
it easy to obtain highly accurate results for the singular potentials by applying the hypervirial
perturbation method which was recently applied to a Penning trap calculation [19]. For large
λ values this method has provided checking results for our finite difference calculations. The
shooting method presented here was developed by the authors during a visit to Besançon in
1992 by one of the authors (JPK). Since then it has been tested for a wide range of singular
potentials, both in already published works and in works for which the present authors have
acted as referees. This long study has shown that the method presented here still remains
original and is more simple and accurate than previously published methods. The only method
which is capable of comparable accuracy is the step-by-step analytic continuation method [16],
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which we have tested and which requires a much more complicated computer program; even
so, we easily obtain the first 12 decimal digits of the results in [16]. The first point to note
is that for the class of problems described by equation (1) the use of the finite difference
method based on a fixed steplength hwill be inefficient because the difficult region near r = 0
will require h to be very small. Both computation and theory [3, 4] have shown that fixed-h
methods must use very large numbers of steps to make the calculated energies E(h) fall into
the region where Richardson extrapolation becomes meaningful; the error as a function of h
contains non-analytic components which spoil its usual smooth (h2, h4, . . .) behaviour [4]. It
is intuitively clear that we need a variable steplength, with small h values near r = 0. Since
this is true for the whole class of problems represented by equation (1), it seems that an analytic
change of variable approach should be appropriate; such an approach will obviously lead to
a much more simple program than that for methods which continuously monitor the local
behaviour in order to adjust the local steplength. Even more importantly, we wish to retain the
powerful Richardson extrapolation procedure to obtain highly accurate energies from a few
runs with varying numbers of steps. After testing several possible transformation functions
we found that the most effective change of variable in (1) is that described by the following
simple formula relating the original r coordinate to the transformed coordinate y;

1 +Kr = exp(Ky). (2)

In (2) K is an adjustable parameter which is chosen empirically. The explicit formula for y
clearly involves a natural log, but the form (2) renders the mathematical analysis very clear
and simple. First, (2) directly yields the relationship dr = (1 +Kr) dy between infinitesimals.
This shows that the use of a fixed steplength in y gives a linearly increasing steplength in r ,
which seems suitable for the class of potentials being studied. After introducing the change
of variable into (1) a little algebra gives the transformed equation

−D2ψ +KDψ = (E − V ) exp(2Ky)ψ = (E − V )(1 +Kr)2ψ. (3)

Introducing the lowest-order finite difference representations of the first- and second-order
derivatives in (3) then leads to a three-term recurrence relation (with W for ‘wavefunction’)

(1 −Kh/2)WN+1 + (1 +Kh/2)WN−1 = [2 + h(VN − E)(1 +KrN)
2]WN. (4)

In (4) we have assumed a fixed steplength h in the y variable and so have given the various
quantities an index N (with y = Nh). We have presented (4) in a form which shows that at
K = 0 it becomes the well known traditional second-order finite difference equation which
can be used for smooth non-singular potentials. In using (4) in a shooting process we have
to work out the r value at each step in order to evaluate the potential V . However, from (2)
we see that the quantity (1 +Kr) propagates from step to step simply by being multiplied by
the fixed number exp(Kh), so that only the extraction of r requires any extra arithmetic. To
perform the shooting we can set W0 = 0, W1 = 1 and vary the trial E in order to search for
the result WN = 0 at the desired boundary r = L. The appropriate boundary value of y is,
of course, found by using the explicit formula for y which follows from (2). In using (4) we
can apply the full range of numerical and programming techniques developed previously [20]:
we can use scaling to avoid any overflow or underflow problems as the shooting proceeds; we
can apply Newton’s method to find the eigenvalues for a given number of steps; and we can
find expectation values directly without the need for quadratures involving the wavefunction.
The key points involved are that the partial derivatives of WN with respect to E and to the
parameter µ (if a potential µU is added to V ) obey (4) except for the addition of a single term.
For the E derivative this term is equal to −h2(1 + KrN)2WN while for the µ derivative it is
h2(1 +KrN)2UNWN .
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Table 1. Results for the potential r2 + λr−M , with λ = 10−4 and varying M , using five runs
plus Richardson extrapolation to find the lowest state of zero angular momentum. For M = 2 the
accurate analytical result is E = 3.000 199 980 004.

M NS0 K E 〈r2〉
1/2 128 64 3.000 102 276 429 1.500 012 7846
1 128 64 3.000 112 837 138 1.500 028 2095
3/2 128 2 048 3.000 138 270 120 1.500 051 8517
2 512 32 768 3.000 199 979 996 1.500 099 9900
5/2 512 1048 576 3.000 407 898 621 1.500 254 8081
3 128 16 384 3.001 754 252 826 1.501 259 5519
7/2 128 2 048 3.007 864 636 336 1.505 833 4352
4 128 2 048 3.022 274 508 729 1.516 637 7034
5 128 2 048 3.076 852 540 268 1.557 705 9597
6 128 2 048 3.155 573 206 759 1.617 322 8352
7 128 2 048 3.246 263 982 512 1.686 540 6632
8 128 2 048 3.341 068 915 312 1.759 480 1280

Thus by simultaneously propagating the W , dW/dE, and dW/dµ values (a procedure
which involves very little extra computational effort) we can obtain the energy near to any
starting E and also find any desired 〈U(r)〉. The results obtained are striking; using a
sufficiently large value of the K parameter and regularly increasing the number of steps
NS leads to a regular sequence of E(NS) values which can be used in the usual Richardson
extrapolation process to give accurate eigenvalues. Previously reported finite difference results
for the class of potentials treated here have usually been of much lower accuracy and have
typically used NS values of hundreds of thousands. Table 1 shows a few typical results for
potentials of the spiked oscillator type. The table showsE and 〈r2〉 for a sequence ofM values.
It also shows the typicalK value required to give the energy to the displayed accuracy, as well
as the step number NS0 used in a sequence of NS values starting with NS0 and with ratio 3/2
between successive NS values, standard Richardson extrapolation being used to obtain the
final E and 〈r2〉 values. The parameters have to be chosen to ensure that the K value gives a
sufficiently small h near r = 0, while NS0 is large enough to keep an h value which is not too
large at the upper limit of integration. A wide band ofK values around the quoted one will give
virtually the same results; indeed, this stability property is obviously necessary if the method is
to be widely applicable. The ‘difficult’ cases are grouped aroundM = 5/2, as was also found
in most of the cited references. Our energy values for very small λ obey with high accuracy
the law deduced theoretically by Harrell [2], that the energy should vary as λA for λ → 0, with
A = 1/(M − 2) for the case of the singular term λr−M with M � 4. We also checked the
computed expectation values by checking that the virial relation 2E = 4〈r2〉+λ(2−M)〈r−M〉
associated with (1) accurately describes the calculated values of the three related quantities. A
little algebra shows that the equations quoted above lead to the simple result 3E = 4〈r2〉 +E0

in the limit λ → 0, for states with the unperturbed energy E0; this equation was also used to
check the results at very small values of λ.

The method works for cases in which the r2 term in (1) is replaced by other smooth
potentials; for the Lennard-Jones potential of the formA(r−12 − r−6)we found the two lowest
states atA = 625 to have the energies −97.539 755 6097 and −27.438 632 8991, respectively.
The methods described in [21] and [22] only give (differing) results of three or four decimal
digits precision. Table 2 shows some results for the slightly unusual example of a singular
perturbation of the smooth potential x4 rather than the usual x2. We carried out further tests
by starting from a postulated wavefunction formed by multiplying a power of r by a term
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Table 2. Energies of several states for Hamiltonian −D2 + r4 + 10−4r−M , (M = 4, 6). In all
cases the upper boundary was at r = 8, with NS0 = 256 and K = 64. Six runs plus Richardson
extrapolation were used.

State number E(M = 4) E(M = 6)

0 3.840 169 8552 4.088 971 7170
1 11.738 134 3778 12.308 538 1420
2 21.383 629 7513 22.269 569 2184
3 32.294 947 7355 33.491 512 3506
4 44.227 966 8383 45.730 963 2455
5 57.030 929 8945 58.836 610 6302
6 70.598 524 9704 72.703 478 9782
7 84.852 563 7887 87.253 651 5892
8 99.732 260 2559 102.426 569 38

exp(−Br2 −Cr−2) and then formally differentiating twice to give a Schrödinger with an exact
eigenvalue and a potential with both r−4 and r−6 terms, as in [10, 11]. Our method gave
energies correct to about 14 decimal digits for these exact test problems. Without giving many
tedious tables of results we can summarize the results of our research by noting that the method
described here has been applied to the singular potential problems in all of the cited references
and in all cases but [16] gives much more accurate results than those reported in the works
concerned. The exception [16] is, as noted above, the work which uses the more complicated
stepwise analytic continuation approach. We note that many of the results obtained by other
techniques and cited in the literature, both for the case of equation (1) with large λ values and
for the Lennard-Jones potential with a large A value, can easily be surpassed in accuracy by
using the simple hypervirial perturbation method mentioned earlier; the details of that method
are given in [19]. For the more difficult case of small λ values, however, the method presented
in this paper is believed to be by far the most accurate simple method available and so should
be of value to the many workers who deal with singular potential problems.
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